

ML4022-MCB Technical Reference

MSA Compliant SFP-DD MCB

multilaneinc.com

multiLane

Table of Contents

1.	Introduction
2.	Key Features3
3.	ML4022-MCB Hardware
3	.1 Power-Up3
3	.2 Operating Conditions4
3	.3 LED Indicators
3	.4 Low Speed Signals4
	3.4.1 External I2C
	3.4.2 External HW Control5
4.	ML4022-MCB Software6
4	.1 USB Driver6
4	.2 GUI6
5.	Hardware Revision6
6.	Firmware Revision
7.	Bootloader7

Table of Figures

Figure 1: External I2C	.4
Figure 2: External Control Signals	.5
Figure 3: Low Speed Signals Schematics	. 5

1. Introduction

The ML4022-MCB is designed to provide an efficient and easy method of programming and testing 100G SFP-DD transceivers and active optical cables. It includes a complete user-friendly GUI supporting all features defined by SFP-DD MSA and simplifying configuration processes to enable intuitive memory map programming and testing. It is designed to simulate an ideal environment for SFP-DD transceivers module testing, characterization and manufacturing.

2. Key Features

- ✓ supports two lanes that operate up to 50 Gbps each
- ✓ Matched differential traces length
- ✓ High performance signal integrity traces from K-connectors to SFP-DD host connector
- ✓ I2C master driven from both on board microcontroller or external pin headers
- ✓ On-board LEDs display MSA output alarm states
- ✓ On-board pin headers for MSA low speed signals external control
- ✓ Current Sense
- ✓ Voltage Sense
- ✓ Temperature Sense
- ✓ USB interface

3. ML4022-MCB Hardware

The subsequent sections cover the essential parts in the hardware, for board operation and testing.

3.1 Power-Up

To power up the ML4022-MCB host, steps are as follow:

- The host TOP is where the cage is mounted
- Two options are available to power up the board:
 - Using the four pins power connector (J43) that should be connected to 5V AND 3.3V taking into account pins distribution, where the SMD jumper (U168) must be populated
 - Using the banana plug (U6) that should be connected to 3.3V where the SMD jumper (U167) must be populated
- Connect the host to your PC using a Type-B mini to Type-A USB cable.

3.2 Operating Conditions

According to the powering method described in section 3.1, the input voltage supply must follow the table below.

Parameter	Symbol	Condition	Min	Typical	Max	Unit
+5	P5V	Supply from J43 (P5V pin)	-	5	-	
+3.3	P3V3	Supply from J43 (P3V3 Pin) OR banana plug U6	3.0	3.3	3.6	V
		Table 1: Voltage Opera				

Table 1: Voltage Operating Conditions

3.3 LED Indicators

The ML4022-MCB includes on-board LEDs, for quick debugging and monitoring purposes. LEDs are summarized below:

- LED D1 indicates whether a USB cable is plugged or not.
- LEDs D2 and D4, colored green and red, respectively, are used for diagnostic purposes:
 - ✓ If D2 is on: USB is locked and device is recognized by the USB driver
 - \checkmark If D4 is on: USB is not connected or USB driver is not found
 - ✓ If both are off: board is not powered correctly or firmware is corrupted
 - ✓ If both are blinking: the board is in Bootloader mode
- Led D10: Mod_Abs signal monitoring
- Led D12: Los signal monitoring
- LED D16: LosDD signal monitoring
- LED D11: Tx_Fault/Int signal monitoring
- LED D24: Tx_FaultDD/IntDD signal monitoring

3.4 Low Speed Signals

3.4.1 External I2C

The I2C bus can be accessed externally using U152 pins. In this case a jumper should be placed on pin header J2 (HW_I2C) shown in the image below.

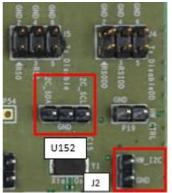


Figure 1: External I2C

3.4.2 External HW Control

Also Low Speed Signals are controllable using an external source, this can be done through control signals pin headers. In this case a jumper should be placed on pin header P19 (HW_CTRL) shown in the image below.

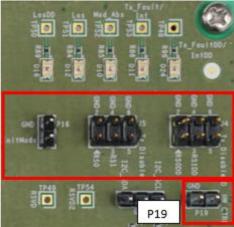
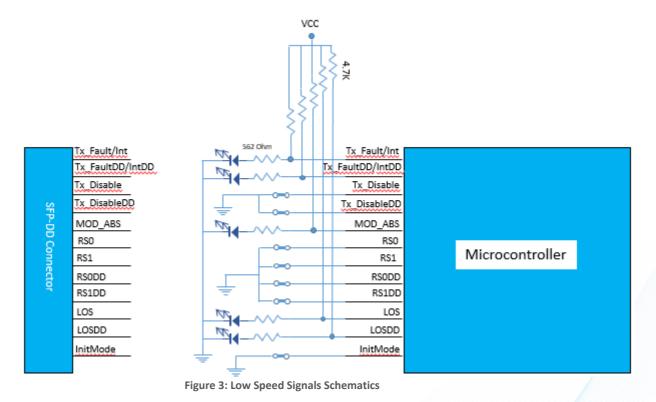



Figure 2: External Control Signals

The low speed signals circuit shown below shows the connection of these signals to the microcontroller and SFP-DD connector.

When the jumper is inserted on P19, the output signals are tri-stated from the microcontroller, and hence could be controlled from an external source.

4. ML4022-MCB Software

The ML4022-MCB is accessible and controlled through application software. This software is MSA compliant and provides a user-friendly interface to operate the board and access all its features. The communication between the ML4022-MCB board and the software is established through USB connection.

4.1 USB Driver

In order to be able to communicate with the board, user need to install the USB driver of the ML4022-MCB. This is available on the website under the following link (USB Driver icon):

https://multilaneinc.com/products/ml4022-mcb/

Below is a brief guide on how to install the USB Driver:

- Power up the board
- Connect the board to the PC through USB cable
- Download the USB driver file
- Go to "Device Manager"
- Find the target device that need to install the driver
- Right-click on the device and select Update Driver Software
- Select Browse my computer for driver software
- Browse you PC and select the driver file
- Click Next and wait until the driver is installed

4.2 GUI

For GUI installation and operation, refer to the link below. GUI user manual is available for detailed description (CMIS GUI Manual icon).

https://multilaneinc.com/products/ml4022-mcb/

5. Hardware Revision

- ML4022-MCB-RevA1: Initial Version

6. Firmware Revision

- **ML4022-MCB-RevA_V1_1:** latest FW revision, compatible with the ML4022-MCB-RevA1 hardware.

7. Bootloader

Accessing in bootloader mode allows the user to reprogram the microcontroller, this is done as described below:

- 1. Connect a jumper on (J1) situated close to the microcontroller.
- 2. Connect a USB cable between the PC and Board.
- 3. Power up the board with a +3.3V supply.
- 4. LEDs (D2, D4) start blinking.
- 5. Remove jumper.
- 6. Open the software "Microchip USB HID Bootloader v2.3".
- 7. Click on "Open Hex File".
- 8. Choose the new FW to download.
- 9. Click on "Program/Verify".
- 10. Once the software finishes programming press on "Reset Device".
- 11. After reset the Firmware is successfully updated.

Revision History

Revision	Date	Description	
0.1	8/24/2020	 Initial Version 	
0.2	10/30/2020	 Update section 3.4.1: pin header name 	
		 Update section 3.4.2: schematics 	

multilaneinc.com