

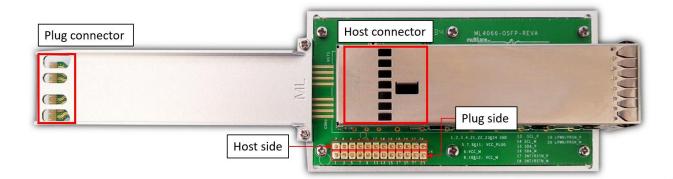
ML4066-OSFP Technical Reference

OSFP-OSFP Diagnostic Adapter

Table of Contents

T	able of	Contents	2
1	Ove	rview	3
	1.1	ML4066-OSFP Adapter Key Features	3
2	ML4	066-OSFP Pin Allocation	3
	2.1	ML4066-OSFP RevA1	3
	2.2	Pins Diagram	4

multilaneinc.com

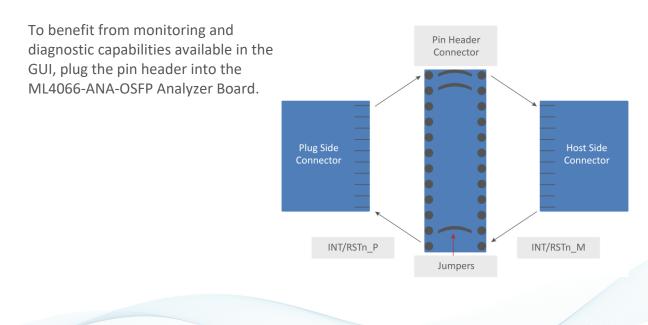

1 Overview

The **ML4066-OSFP** is a general purpose diagnostic adapter, which allows user to access all OSFP controls, alarms and I2C signals, in addition to power nets, for testing purpose. A pin header connector, that breaks the connection between the "Plug connector" and "Host connector", is used to access OSPF pins individually, or when using jumpers, allows to connect plug connector to host connector pins, in addition to use this pin header to connect I2C analyzer.

1.1 ML4066-OSFP Adapter | Key Features

- All high speed signals are connected from the OSFP Plug to the front OSFP host connector with superior SI traces
- Low insertion loss PCB traces
- Power pins are accessible via pin headers and can be jumped to connect them to the plugged OSFP transceiver
- All low speed management signals are accessible via pin headers, and can be jumped to connect them to the plugged OSFP transceiver
- I2C SCL and SDA signals accessible via pin headers or can be jumped to connect them to the plugged OSFP transceiver
- Ability to drive I2C from external pin headers, or connect I2C packet analyzer
- Ability to drive 3.3 V from external source for power supply margining
- Ability to break 3.3 V power from Host to module allowing voltage and current measurement
- Interface to connect SFF Analyzer board
- 2 ML4066-OSFP Pin Allocation

2.1 ML4066-OSFP RevA1


The pin allocation of the ML4066-OSFP pin header is summarized in the table below:

PIN Number (Host Side)	Host Side (Transceiver connector)	Plug Side	PIN Number (Plug Side)
2	GND	GND	1
4	GND	GND	3
6	VCC_M	VCC_PLUG	5
8	VCC_M	VCC_PLUG	7
10	VCC_M	VCC_PLUG	9
12	VCC_M	VCC_PLUG	11
14	SCL_M	SCL_P	13
16	SDA_M	SDA_P	15
18	INT/RSTn_M	INT/RSTn_P	17
20	LPWn/PRSn_M	LPWn/PRSn_P	19
22	GND	GND	21
24	GND	GND	23

2.2 Pins Diagram

The adapter allows the user to make use of the pins to achieve a variety of different measurements as listed below:

- User can probe or drive the Host side
- User can probe or drive the Plug side
- User can place jumpers to connect the Plug side to the Host side.

Revision History

Revision number	Date	Description
0.1	1/29/2021	Preliminary
0.11	10/14/21	 Format/language updates

multilaneinc.com