

400G Host Testing Solutions

Rev. 2.0

Innovation for the next generation

in the second

www.multilaneinc.com

Outline

- Company Profile
- Host Testing Snapshot and Life Cycle
- ML4039EN Overview
- Engineering Characterization
 - TX Compliance

RX Tolerance

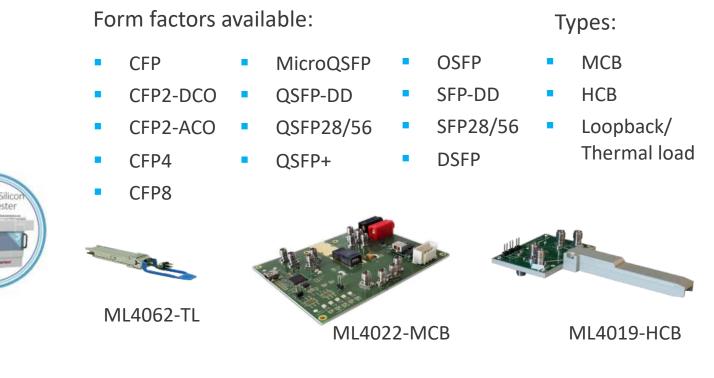
- Production Testing
 - Thermal Loading

- Port Validation
- Deployment and Installation
 - CMIS Compliance
- Field and RMA Support
 - SI Troubleshooting
- Instrument Specifications

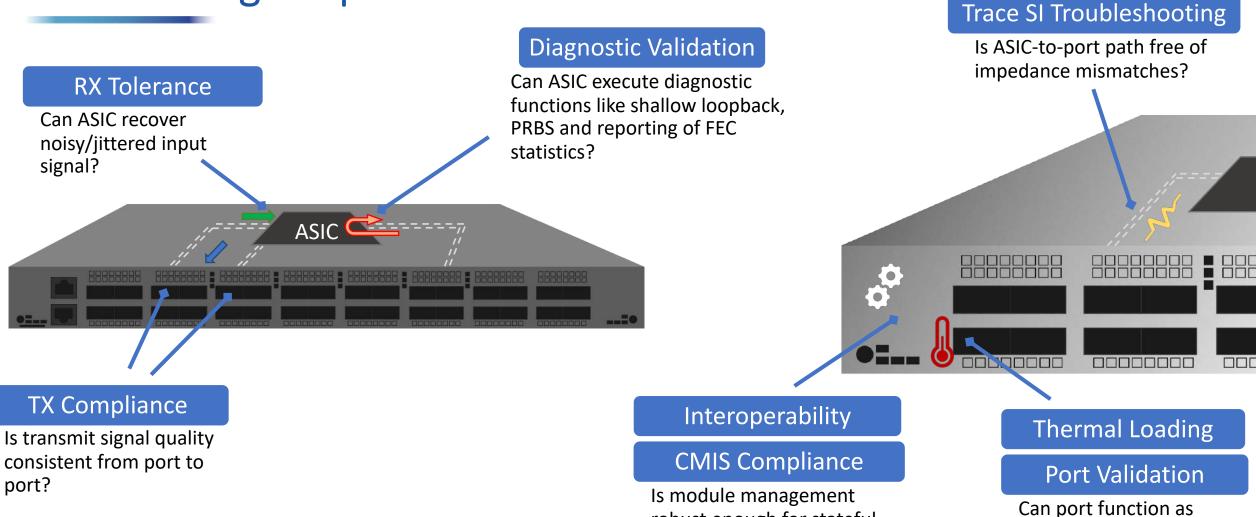
Innovation for the next generation

CMIS Interoperability

Diagnostic Validation



Company Profile


Our products

Interconnects

Host Testing Snapshot

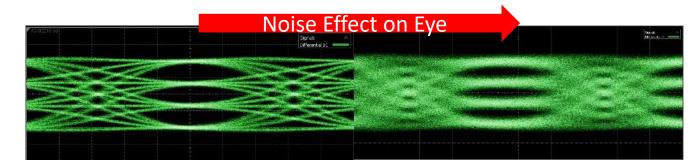
robust enough for stateful


host/pluggable interactions?

Innovation for the next generation

expected and regulate

pluggable temp?



ML4039EN Overview

Emulate Real-Life Crosstalk Conditions

- 4x56 GBaud BERT with Crosstalk Noise Injection
- Noise implementation:
 - Continuous interference (bounded uncorrelated noise BUN, spectrum 0.5 to 20 GHz)
 - Burst crosstalk noise (140 MHz to 5 GHz repetitive, 20 GHz spectrum)
 - Single shot noise (5 ms or slower per incident)
- Real HW FEC (KP, KR) Analysis
- Programmable channel emulation (ISI impairment)
- Shallow loopback support within instrument

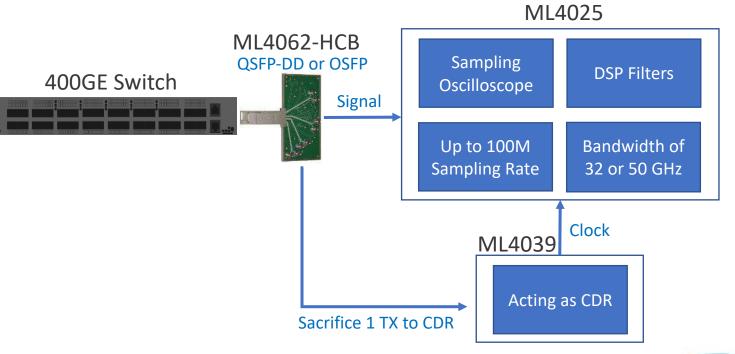
Engineering Characterization

Transmit Compliance

RX Tolerance

Diagnostic Validation

TX Compliance: Configuration 1


Using ML4025 and ML4039 (as CDR)

Feasible Tests

Parameter	Reference	Value	Units
Signaling rate per lane (range)		26.5625 ± 100 ppm	GBd
Differential peak-to-peak output voltage ^a (max) Transmitter disabled Transmitter enabled	93.8.1.3	30 1200	mV mV
Common-mode voltage ^a (max)	93.8.1.3	1.9	v
Common-mode voltage ^a (min)	93.8.1.3	0	v
AC common-mode output voltage ^a (max, RMS)	93.8.1.3	30	mV
Differential output return loss (min)	120D.3.1.1	Equation (120D-2)	dB
Common-mode output return loss (min)	93.8.1.4	Equation 93-4	dB
Output waveform ^b Level separation mismatch ratio R _{LM} (min) Steady state voltage v _f (max) Steady state voltage v _f (min) Linear fit pulse peak (min) Pre-cursor equalization Post-cursor equalization	120D.3.1.2 120D.3.1.4 120D.3.1.4 120D.3.1.4 120D.3.1.5 120D.3.1.5	0.95 0.6 0.4 0.76 $\times v_f$ Table 120D-2 Table 120D-3	
Signal-to-noise-and-distortion ratio SNDR (min)	120D.3.1.6	31.5	dB
Transmitter Output residual ISI SNR_{ISI} (min)	120D.3.1.7	34.8	dB
Output jitter ^J _{RMS} (max) J4u (max) Even-odd jitter (max)	120D.3.1.8 120D.3.1.8 120D.3.1.8	0.023 0.118 0.019	ਯ ਯ ਯ

Table 120D-1-200GAUI-4 and 400GAUI-8 C2C transmitter characteristics at TP0a

- Host ASIC enables PRBS
- Characterize TX Path with ML4025 and ML4062-HCB
- Recover clock from 1 TX Channel using CDR

^aMeasurement uses the method described in 93.8.1.3 with the exception that the PRBS13Q test pattern is used.
^bThe state of the transmit equalizer is controlled by management interface.

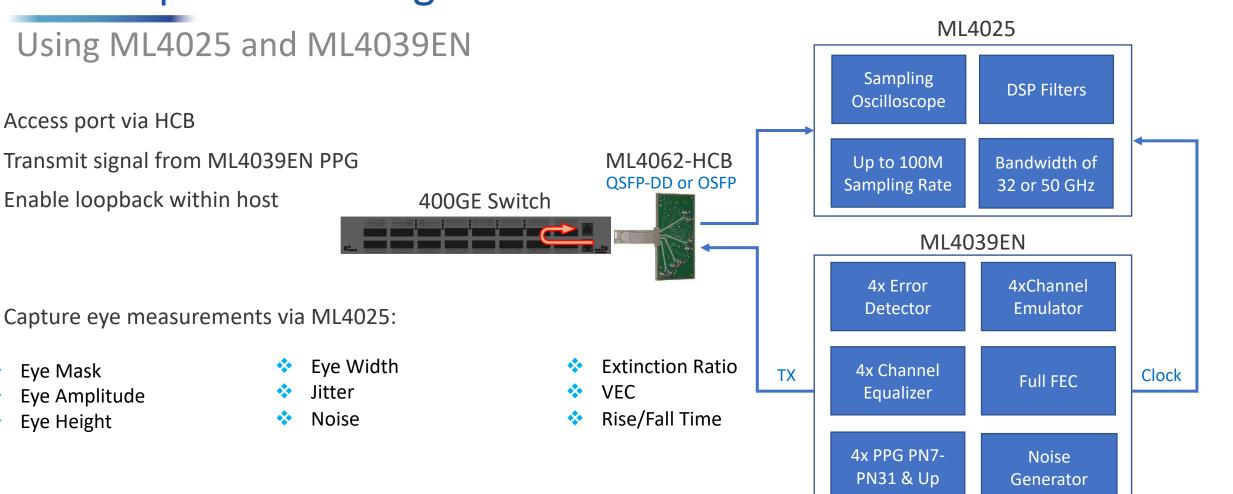
TX Compliance: Configuration 2

Using ML4025 and ML4039EN

Access port via HCB

Eye Mask

Eye Height

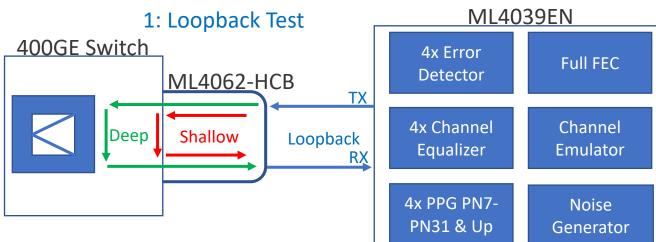

Eye Amplitude

•

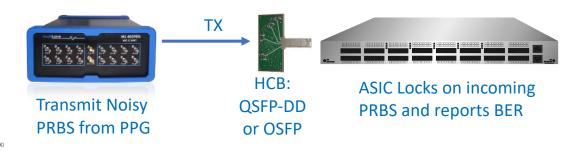
•

•

- Transmit signal from ML4039EN PPG
- Enable loopback within host



RX Tolerance


Noise Injection

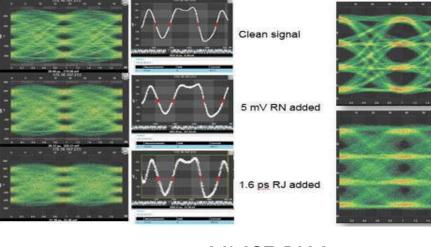
- Characterize path from Port to ASIC
- Config 1:
 - Generate noisy signal from ML4039EN PPG
 - Loop signal through switch
 - Track pre/post FEC statistics via ML4039EN Error Detector
 - Adjust multiple equalization knobs from BERT
- Config 2:
 - Generate noisy signal from ML4039EN PPG
 - Switch ASIC RX locks on incoming PRBS and reports BER

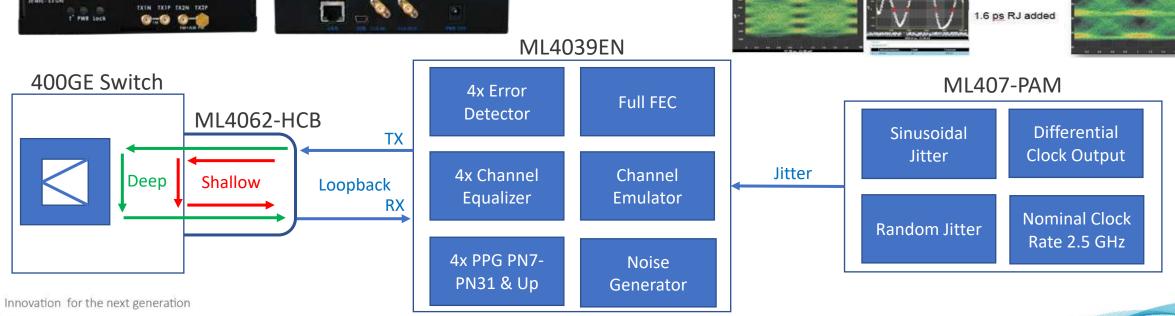
2: Single Direction Test

RX Tolerance

Jitter Injection

ML407 PAM


T PWR Lock


ML407-PAM Clock Source injects SJ and RJ into ML4039EN

Lane

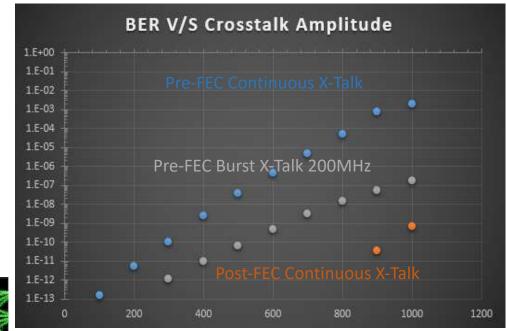
TXIN TXIP TX2N TX2P

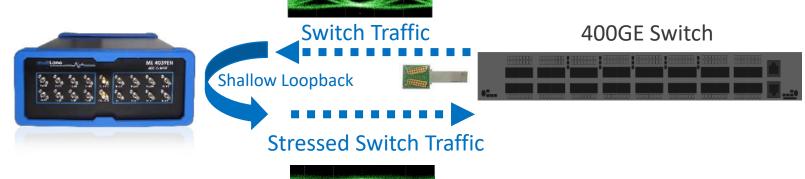
Characterize host environment with simultaneous noise and jitter injection

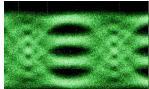
RX Tolerance

DAC Approach

- Emulate a "Worst case channel"
- ML4039EN acts as PPG with noise injection
- ML406–MCB acts as host for 400G Direct Attach Cable (DAC)
- DAC mates with MCB and Switch port
- Bi-directional testing:
 - TX from ML4039EN PPG, RX lock via Switch ASIC
 - TX from Switch ASIC, RX lock via ML4039EN Error Detector

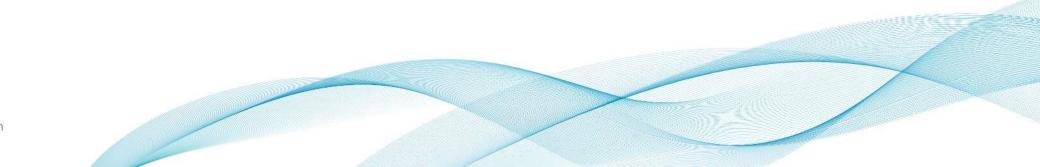





Diagnostic Validation

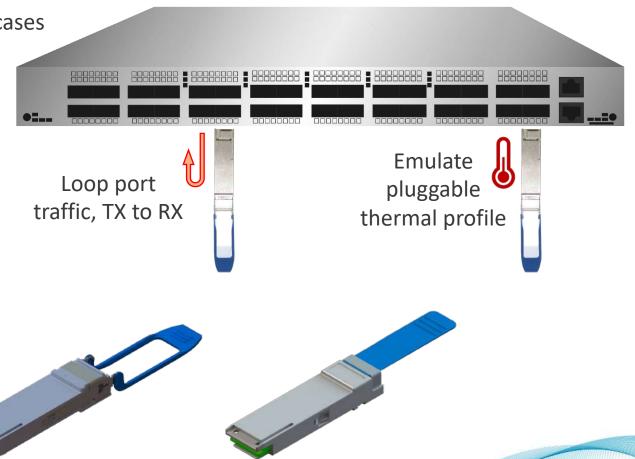
Shallow Loopback with ML4039EN

- Transmit desired traffic type within host ASIC
 - Unframed PRBS, FEC traffic,
 - Access entire port with ML4062-BO
- ML4039EN loops back switch output and injects noise
- Monitor statistics vs noise amplitude from switch CLI:
 - Pre-FEC BER (PRBS Traffic)
 - Corrected/Uncorrected Blocks (FEC Traffic)



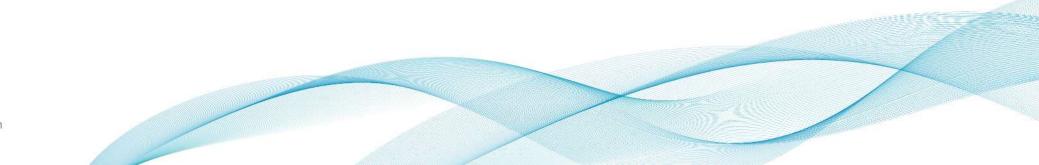
Production Testing

Port Validation and Thermal Loading



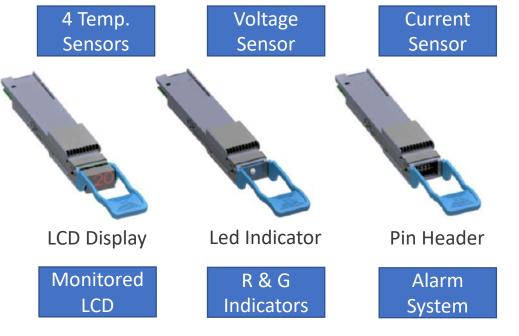
Pluggable Loopbacks

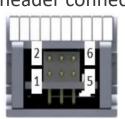
Industry Leading Port Testing Solutions


- MultiLane is the global leader for loopback solutions
- Certify port performance for production or benchtop cases
- SI traces loopback Port TX into RX
- MSA Housing Compatible
- Programmable thermal emulation:
 - OSFP (up to 24W)
 - QSFP (up to 8W)
 - QDD (up to 20W)
- Customize <u>anything</u>:
 - Insertion Loss
 - Power Dissipation
 - EE-PROM Content
 - FW for CMIS Testing
 - PN, Logo, Pull tab

Deployment and Installation

CMIS Compliance and Interop



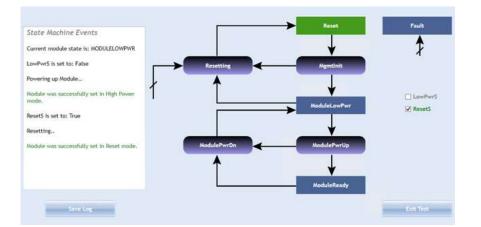

Smart Loopbacks

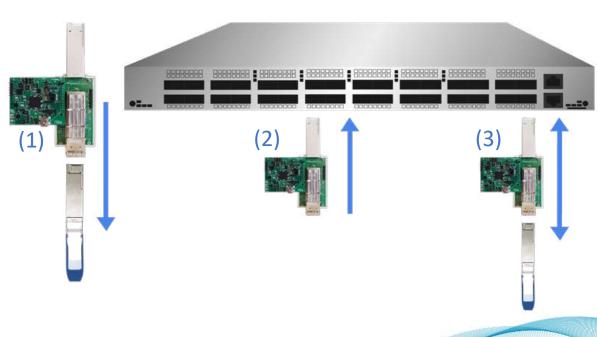
Intelligent Features via the ML4062-TL2a

- QSFP-DD MSA form factor
- MSA compatible configuration and EEPROM
- Programmable MSA memory pages
- Custom memory maps
- Low speed signal status
- Digital state decision and edge detection of control signals
- Force alarm signals to Hi/Lo or tri-state
- Three options:
 - ML4062-TL2a-C-LCD: temperature and other monitoring values (current or voltage), depending on the LCD control register
 - ML4062-TL2a-C-LED: power mode and alarms monitoring (red & green indicators with solid & blinking modes)
 - ML4062-TL2a-C-CON: board to board connection

Pin header connector

LCD power state indicator

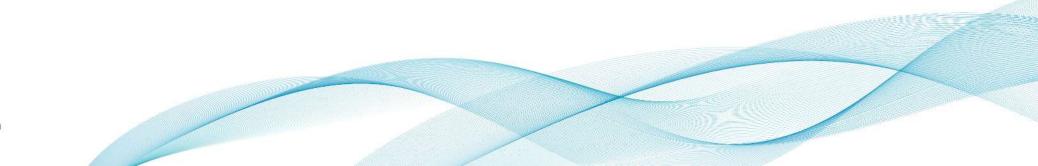




CMIS Test

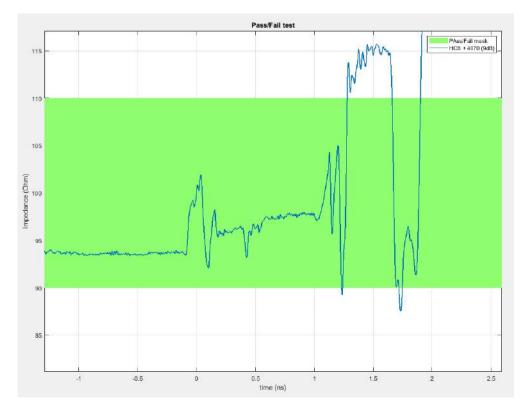
Using ML4066 Analyzer

- Validate host implementation of Common Management Interface Specification
- Certify that parameters like optic DOM and ID, errors and alarms are monitored correctly on host
- State Machine test (Pass/Fail)
- Monitor and log I2C transactions between host and pluggable
- Force host alarms
- Enable versatile CMIS testing in three modes:
 - 1) Master mode: Analyzer behaves as a host for a module DUT
 - 2) Slave mode: Analyzer behaves as a module for a Switch DUT
 - 3) Bypass/Sniffer mode: Analyzer reports on communication between module and switch



Field and RMA Support

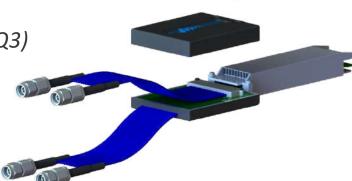
SI Troubleshooting



Port Troubleshooting

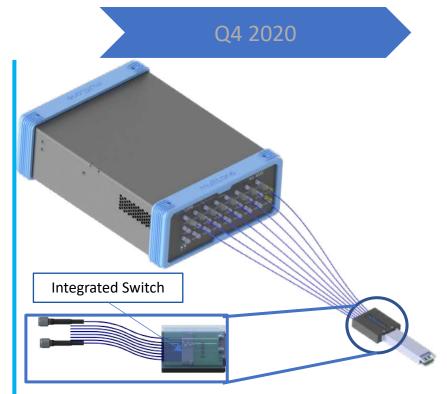
Process Flow For Port Debug

- Loopback module is first inserted for BER test
- If port BER is high, troubleshooting required
- TX path is tested using ML4035 Scope with CDR via HCB
- Impedance measurements help identify source of issue
- The ML4035 enables TDR Testing for port debug:
 - Isolate impedance mismatches and discontinuities
 - Pass/Fail verdict for each lane
 - Gated TDR → hone-in on fault area (for instance, a bad connector or broken pin)
 - Sub ohm accuracy


Port Troubleshooting

Introducing Cabled HCBs

- Cabled HCB: Transceiver-like connector with 2.4mm multi-coax cables (available in Q3)
 - RF cables and host plug integrated into one package
 - Plugs directly into switch
 - All major form factors (SFP, QSFP, QSFP-DD, OSFP & CFP2)
- Cabled HCB with integrated Switch (available in Q4)
 - Four integrated 4:1 switches -> Test 16 differential lanes with a 4-lane tester
 - Unlocks full port coverage (TX+RX) with a single plug



Port Characterization & Troubleshooting

Solution Guide

ML4035 + Cabled HCB with Integrated Switch (single plug)

Instrument Specifications

ML4039EN Specs

PPG Specs

- NRZ & PAM4
- Quad 23 29 GBd and 46 58 GBd
- Full FEC (KP4 & KR4) and Gray coding
- 3 types of noise generation:
 - Random noise (bounded uncorrelated noise BUN, spectrum 0.5 to 20 GHz)
 - Burst Noise (140 MHz to 5 GHz repetitive, 20 GHz spectrum)
 - Single shot noise (5 ms or slower per incident)
- Channel & ISI emulation
- 7 FIR TX taps
- PRBS 7, 9, 13, 15, 23, 31, 58 PRBS 13Q, 15Q, 31Q SSPRQ, square & custom pattern
- Maximum voltage swing :
 - ✤ 0 800 mVpp
- Error insertion
- Pre- and Post-emphasis

Innovation for the next generation

ED Specs

- Total DFE/FFE/CTLE equalization up to 13 dB
- FEC measurements (including Pre & Post FEC)
- ADC based
- SNR & PAM4 histogram monitoring
- PAM4 slicer threshold adjustable
- PRBS 7, 9, 13, 15, 23 & 31 checker
- Automatic PRBS detection
- Clock-data recovery
- 4 channels of the CDR can be used to track 4 signals on the same clock with different skew, but there is one recovered clock from either of the 4 signals
- 15 FFE RX taps
- BER counters

ML4025 Specs

- 4 channel 32 or 50 GHz DSO
- Fast acquisition, FPGA-based
- Input swing max: 1200 mVpp
- Full Eye and mask measurements
- SSPRQ & up to PRBS16 pattern lock
- Jitter Decomposition (TJ, RJ, DJ)
- CTLE, S2P De-embedding, FFE, DFE, etc...
- NRZ and PAM measurement Libraries (APIs)
- Memory depth: 2¹⁶ Pattern Length
 - Fast acquisition
 - Full Eye and Mask Meas.
 - Fast sampling rate > 100 MHz

ML4035 BERT (PPG & ED) Specs

PPG Features

- PAM-4: 22 29.6 and 48 56 GBd
- NRZ: 22 29 and 48 56 Gbps
- DFE Pre-coding and Gray coding
- Channel Emulation & Full FEC
- PRBS 7/9/11/13/15/16/23/31/58 PRBS13Q, 31Q and SSPRQ Square wave, JP03A/B, CID JTOL pattern
- Maximum voltage swing:
 - ✤ 0 800 mVpp
- Error insertion
- Pre- and Post-emphasis

ED Features

- Total DFE/FFE/CTLE equalization up to 13 dB
- SNR & PAM4 histogram monitoring
- FEC measurements
- PAM4 slicer threshold adjustable
- Reference clock output rate div 8/16/32/165
- PRBS 7, 9, 13, 15, 23 & 31 checker
- Automatic PRBS detection
- Clock-data recover
- BER counters

ML4035 DSO & TDR Specs

DSO Specs

- 4-Lane 35 GHz Digital Sampling Scope optimized for high speed data analysis
- High fidelity signal capture
- CDR up to 30 Gbps
- Low intrinsic Jitter
- Jitter decomposition (TJ, RJ, DJ)
- CTLE, S2P De-embedding, FFE, DFE, etc...
- SSPRQ & up to PRBS16 pattern lock
- NRZ and PAM measurement Libraries (APIs)
- Memory depth: 216 Pattern Length
 - Fast, coherent acquisition
 - Full Eye and mask measurements
 - Fast sampling rate

TDR Specs

- High resolution TDR/TDT measurements
- 4-Lane 35 GHz Time Domain Reflectometry / Transmission optimized for high speed tests and measurements
- Impedance profile measurement
- S-Parameters:
 - Return & Insertion loss
 - Crosstalk
 - Accurate multisport S-parameters

ML407-PAM Specs

- Clock source
- Sinusoidal jitter generation
- Multi-UI clock frequency
- Modulation
- Random Jitter Generation
- Used for stressed input testing of PAM4 receivers / 56G VSR PAM

Note: Anything above 4MHz is not added sine wave, but more of a flat noise

ML4062 MCB & HCB Specs

		NEW	NEW		
ML4062-MCB	ML4062-HCB (1&2)	ML4062-MCB-112 (available in July)	ML4062-HCB-112 (1&2) (available in July)		
QSFP-DD (Also available in OSFP)					
8x50 Gbps	Each HCB supports 4x50G	8x112G	Each HCB supports 4x112G		
2.9mm K Connectors		2.4mm V Connectors			

Innovation for the next generation

North America 48521 Warm Springs Boulevard Suite 310 Fremont, CA 94539, USA +1 510 573 6388

Asia 14F-5/ Rm.5, 14F., No 295 Sec.2, Guangfu Rd. East Dist., Hsinchu City 300, Taiwan (R.O.C) +886 3 5744 591

THANK YOU