USER MANUAL

AT93000 System User Manual

System Overview

multiLane

Notices

Copyright © MultiLane Inc. All rights reserved. Licensed software products are owned by MultiLane Inc. or its suppliers and are protected by United States copyright laws and international treaty provisions.

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013, or subparagraphs (c)(1) and (2) of the Commercial Computer Software -- Restricted Rights clause at FAR 52.227-19, as applicable.

MultiLane Inc. products are covered by U.S. and foreign patents, issued and pending. Information in this publication supersedes that in all previously published material. Specifications and price change privileges reserved.

General Safety Summary

Review the following safety precautions to avoid injury and prevent damage to this product or any products connected to it. To avoid potential hazards, use this product only as specified.

Only qualified personnel should perform service procedures.

While using this product, you may need to access other parts of the system. Read the General Safety Summary in other system manuals for warnings and cautions related to operating the system.

To Avoid Fire or Personal Injury

Use Proper Power Cord. Only use the power cord specified for this product and certified for the country of use.

Observe All Terminal Ratings. To avoid fire or shock hazard, observe all ratings and markings on the product. Consult the product manual for further ratings information before making connections to the product.

Do not apply a potential to any terminal, including the common terminal that exceeds the maximum rating of that terminal.

Do Not Operate Without Covers.

Do not operate this product with covers or panels removed.

Avoid Exposed Circuitry. Do not touch exposed connections and components when power is present.

Do Not Operate with Suspected Failures.

If you suspect there is damage to this product, have it inspected by qualified service personnel.

Do Not Operate in Wet/Damp Conditions. Do Not Operate in an Explosive Atmosphere. Keep Product Surfaces Clean and Dry

Caution statements identify conditions or practices that could result in damage to this product or other property.

Contents

Contents
Table of Figures4
Overview of the Advantest V93000 High Speed I/O (HSIO) Test System5
Cassette and Backplane Location References8
Master/Slave Clock Sync Configuration on AT93000 backplanes9
Backplane Switch Settings 9 Setting Master/Slave Manually 11 Setting Master/Slave using USB Programming Mode 12
Family Board13
Air, Power, and Ethernet sources14
Site Preparation and Installation14
Docking the TFRAME to the V93000 testhead14
Ethernet Connections and IP Addressing15
Software installation when controlling AT93000 via V93000 Smartest15
Customer Loadboard15
Appendix: Example Customer Documentation16
Appendix: Software installation when controlling AT93000 via PC17
Appendix: Older Revision Backplane Clock Jumper Settings (AT4000 REV B)18

Table of Figures

Figure 1: V93000 CTH testhead with Multilane TFRAME attached on top	5
Figure 2: Building blocks of the Multilane TFRAME	5
Figure 3: TFRAME with red arrows pointing to the 4 Multilane cassettes	6
Figure 4: AT93000 signal paths from instruments to DUT	6
Figure 5: Instrument Cassette with protective cover removed	7
Figure 6: AT93000 Cassette Area	7
Figure 7: (Top View) AT93000 Backplane and Cassette numbering	8
Figure 8: Pogo Block, ordered through Advantest. Part number E8028-PSD	8
Figure 9: Cassette 4 populated. AT4039 plugs into Backplane 1. AT4025 into Backplane 2.	9
Figure 10:SPMP Clock Connectors on ML Backplanes 1 and 2	10
Figure 11:SMPM Clock Connectors on Family Board	10
Figure 12: Backplane Reference Designators.	11
Figure 13: Manual Mode Master Slave Switch Settings	11
Figure 14: Backplane USB and Master/Slave LED light indicators	12
Figure 15:GUI for Master/slave config	13
Figure 16:AT93000 twinning lift described in the Advantest documentation	14
Figure 17:AT4000 REV B Backplane	18
Figure 18:AT4000 REV B cable connection options between backplanes	18

Overview of the Advantest V93000 High Speed I/O (HSIO) Test System

Figure 1: V93000 CTH testhead with Multilane TFRAME attached on top

The Advantest V93000 High Speed I/O (HSIO) Test System allows V93000 users to source and measure DUT signals up to 56GBaud PAM4. See the AT93000 brochure for information about this HSIO test system feature located at <u>V93000 ATE Test Solutions | MultiLane (multilaneinc.com)</u>

In Figure 1, the AT93000 twinning frame (TRAME) is hard docked on top of a V93000 test head. The AT93000 is compatible with CTH and STH Advantest V93000 testheads. The user's DUT loadboard is hard docked on top of the TFRAME and the device handler or wafer prober is hard docked to the DUT loadboard. For wafer probe, the TFRAME would be upside down from this picture. Figure 1 shows the HSIO¹ twinning frame docked to a CTH testhead with one of sixteen populated Pogo Segments. An exploded view of these individual pieces is shown in Figure 2, including up to four Multilane instrument cassettes.

Figure 2: Building blocks of the Multilane TFRAME

¹ HSIO is an ATE industry acronym for "High Speed Input/Output". The AT93000 is an HSIO solution

Figure 3: TFRAME with red arrows pointing to the 4 Multilane cassettes

The main advantage of the ATE system as compared to using benchtop instruments, is that the signal path between DUT and Cassette instruments is considerably shorter thus minimizing insertion and return losses. The AT93000 channel density maximum is up to 32 channels if all 4 cassettes are fully populated.

Figure 4: AT93000 signal paths from instruments to DUT

Each of the four Multilane cassettes contains either one or two Multilane high-speed instruments. Refer to each instrument's User Manual for the blindmate connector pinout of that instrument in the cassette. Instrument manuals and datasheets can be found at <u>ATE | MultiLane (multilaneinc.com)</u>. Figure 5 shows one side of a cassette with the protective cover removed. This exposed PCB is a 4-channel (differential) Multilane instrument. The other side of the cassette can have a second 4-channel Multilane instrument for a total of 8 differential channels per cassette. Figure 5 also shows the backplane connector. User Manual pinouts are referenced to this connector. The instrument on the opposite side of the cassette is facing into the page so that its backplane connector is located on the backside, lower left corner. For example, a cassette might contain a 4-channel AT4039D BERT on side 1 of the cassette and a 4-channel AT4079B BERT, there will only be one 8-ch instrument in the cassette with one connector due to blindmate 32-pins limitation.

Figure 5: Instrument Cassette with protective cover removed

Figure 6 shows the AT93000 area located under the docked device loadboard.

Figure 6: AT93000 Cassette Area

	ltem	Description of Items in Figure 6
1	Cassette	See: Figure 5: Instrument Cassette with protective cover removed, page 7 See: Cassette and Backplane Location References, page 8
2	Backplane	Two backplanes – one at top and one at bottom Provides power, communication, and clock sync to the cassettes See "Cassette and Backplane Location References", page 8
3	Backplane connectors	Instrument PCB's inside cassettes plug into these connectors
4	Power connector	12V, 6.5A each backplane for a total requirement of 13A external power supply
5	Clock out	Clock cabling between backplanes See "Master/Slave Clock Sync Configuration on AT93000 backplanes", page 9
6	Clock In	Clock cabling between backplanes See "Master/Slave Clock Sync Configuration on AT93000 backplanes", page 9
7	Ethernet	See "Ethernet Connections and IP Addressing" on page 15
8	Air Intake	(not shown in picture). Air intake used to cool the cassettes. See "Air, Power, and Ethernet sources" on page 14

Table 1 : AT93000 Pieces

Cassette and Backplane Location References

For consistency across all customer configurations, the backplane and cassette reference numbers are arbitrarily chosen to be defined as shown in Figure 7. The sixteen quadrants labeled 1A to 8B are Advantest defined labels². The "arrow up" engravings on the twinning frame are referenced as pointing "UP". Instruments on the right side of cassettes are plugged into backplane 2. Instruments on the left side of cassettes are plugged into backplane 1. User documentation should be provided to explain to the cassette installer which direction to plug in the cassette. The backplane that an instrument is plugged into also effects the Master Clock synchronization scheme. See "Master/Slave Clock Sync Configuration on AT93000 backplanes" on page 9.

Figure 7: (Top View) AT93000 Backplane and Cassette numbering

Figure 8: Pogo Block, ordered through Advantest. Part number E8028-PSD

² A subset of these quadrants brings the V93000 resources up to the loadboard. Advantest P/N E8028-PSD

multiLane

Figure 9: Cassette 4 populated. AT4039 plugs into Backplane 1. AT4025 into Backplane 2.

Master/Slave Clock Sync Configuration on AT93000 backplanes

A master clock can either be generated by one of the installed BERT instruments or by a clock from the DUT loadboard. There can only be one clock master for synchronizing all BERTs and DSOs on each backplane. All other instruments on that backplane operate as clock slaves and will synchronize their operation to the instrument or loadboard master clock. The Master/Slave clock configuration is controlled through switch settings on backplane 1 and backplane 2 and is explained later in this section.

If the clock is coming from the DUT or V93000, then all cassette instruments will be slaved to the external master clock. In this case, the external differential clock³ should be cabled to the "clock-in" SMP connectors on the backplane having the slaved instruments, using two high-speed cables. Check Multilane instrument datasheets for maximum clock sync frequency. For explanation how to send DUT clock signals to the ML backplanes via family board, see <u>Multilane Family Board</u> <u>Documentation</u>.

Backplane Switch Settings

Backplane switches control which instrument clock (or loadboard clock) controls the clock synchronization between instruments⁴. There are switches and switch straps on each backplane.

⁴ For older backplanes, refer to

³ Single-ended clocks coming from the DUT loadboard are not supported. They must be differential.

The switch straps are for *Multilane internal use only* and should never be changed from what is shown in Figure 10.

Figure 10:SPMP Clock Connectors on ML Backplanes 1 and 2

The ML backplane SMPM connectors are shown in lower left picture of Figure 10. Cables can either connect from backplane 1 to backplane 2 or to the family board as shown in Figure 11. The family board connections go up through the G1A Advantest pogo block and are available to be connected on the DUT loadboard.

Figure 11:SMPM Clock Connectors on Family Board

Referring to Figure 10, each of the 5 switches on each backplane control the master/slave modes by one of two methods:

Appendix: Older Revision Backplane Clock Jumper Settings on page 17.

- 1. Manually: Set each switch to either 3V3 or GND
- 2. USB Programming Mode: Set all switches to PRG

Setting Master/Slave Manually

Set the 5 switches on each backplane using Figure 1Figure 12 and the table in Figure 13.

Figure 1	2: Backpl	ane Referen	ce Designators.
----------	-----------	-------------	-----------------

	U450 is MASTER	U451 is MASTER	U452 is MASTER	U453 is MASTER	All U45x SLAVE
Backplane 1	plane 1 C1L		C2L C3L		All Slave
Backplane 2	C4R	C3R	C2R	C1R	All Slave
SW1	0	0	0	1	0
SW2	0	0	1	0	0
SW3	1	0	0	0	0
SW4	0	1	0	0	0
SW7	1	1	1	1	0

Figure 13: Manual Mode Master Slave Switch Settings

Figure 14: Backplane USB and Master/Slave LED light indicators

Setting Master/Slave using USB Programming Mode

Contact Multilane if USB Programming Mode is to be used.

Step 1: Set all switches to PRG

Step 2: Connect laptop to USB port shown in Figure 14

Step 3: Obtain ML AT4000 GUI

Step 4: Use GUI shown in Figure 15 to set one of the instruments as the master or to set all the instruments to slave. When all slave, the expectation is that the master will either be coming from the other backplane or from the DUT loadboard via the family board

🖳 AT4000 GUI			_	×
	Connect	I		~
U450				
U451				
U452				
U453				
All Mux				

	U450 is MASTER	U451 is MASTER	U452 is MASTER	U453 is MASTER	All MUX
Backplane 1	C1L	C2L	C3L	C4L	All Slave
Backplane 2	C4R	C3R	C2R	C1R	All Slave

	Figure	15:GUI f	for Mas	ter/slave	config.
--	--------	----------	---------	-----------	---------

Family Board

The Multilane family board, AT93000-1900002, is a general-purpose solution and is optimized for high-speed devices with lower digital pin counts and lower current requirements. If this Family board does not suit your application and you require a different selection of V93000 tester resources, a custom family board will have to be designed.

V93000 mapped resources through the AT93000-1900002 are as follows:

- 11x PS1600 (1408 pins)
- 3x PS9G (192 pins)
- 4x DPS64 (256 supplies)
- 2x DPS128 (256 supplies)
- 2x UHC4 (8 supplies @ 40A)
- 1x MBAV8

Contact Advantest for further information about V93000 tester resources. More information about the AT93000-1900002 Family Board can be found at <u>AT93000-1900002 | MultiLane</u> (multilaneinc.com)

Air, Power, and Ethernet sources

The AT93000 cassette instruments are

- Cooled using compressed air
- Powered from an external +12V supply
- Communicated with through ethernet

All these system resources are supply by an external utility box. Refer to the Utility box manual at <u>AT93000-UBOX | MultiLane (multilaneinc.com)</u>

Site Preparation and Installation

Refer to the site preparation and installation manuals at <u>V93000 ATE Test Solutions | MultiLane</u> (multilaneinc.com)

Docking the TFRAME to the V93000 testhead

The AT93000 weighs approximately 35Kg, so some type of mechanical lift assist may be required. For additional information on using a mechanical lift to assist with docking the TFRAME, refer to Advantest Service Documentation, Topic 342435, "Lifting the Twinning equipment".

Figure 16:AT93000 twinning lift described in the Advantest documentation

Ethernet Connections and IP Addressing

Multilane instruments are controlled by individual IP addresses. IP addresses are hardcoded and are not dynamically assigned at runtime (DHCP). For help choosing the appropriate ethernet connections for each instrument, contact Multilane at ATE-FAE@multilaneinc.com

Software installation when controlling AT93000 via V93000 Smartest

Refer to the site preparation manual at <u>V93000 ATE Test Solutions | MultiLane (multilaneinc.com)</u>

Customer Loadboard

Refer to Final Test or Wafer Test loadboard documentation at <u>Final Test Loadboard</u> and <u>Wafer Test</u> <u>Loadboard</u>

Appendix: Example Customer Documentation

Here is documentation that Multilane uses to guarantee consistent customer configurations leaving our factory. Items in RED are unique for each assembly. The items in RED here are an example and should be changed to match the customer's assembly requirements

Multilane Twinning Frame Assembly Form													
Twinning Frame Serial #:													
Custom	Customer Contact Name, Email, Phone #:												
Final Ins	pection	By:						D	ate:0	lick or ta	ip to	ente	r a date.
Shippin	g To:												
NOTES:													
10120.													
L													
	AT40xx Firmware Original IP												
	Part IP address Per FPGA Rev Serial Num				ial Num	ber		address					
	Num										_		
CIR	A14080	192.1	1.62	5.0.69	<u> </u>				+		_		
C2R	AT4039F	192 1	68	0.68					+		-		
C2L	EMPTY								+		-		
C3R	EMPTY								+				
C3L	EMPTY												
C4R	AT4025	192.1	68	8.0.65									
C4L	AT4025	192.1	68	8.0.64									
PDU		192.1	.68	3.0.51									
	D1	82											
Bynass	DI	DZ											
Mode	Yes	Yes											
	·												
Jumpers	Mode						Т						
(0 or 1)		SW1		SW2		SW3	4	SW4	SI	N7			
B1 B2	All Slave	0		0	+	0	+	0		0			
B2 All Slave 0 0 0 0 0 0													
Co	oax Cable	B1-CON1	E	B1-CON2	B1-C0	DN3	В	1-CON4	SMP1	SMP2	SN	1P3	SMP4
FR	OM / TO	CLKIN+		CLKIN-	CLKO	UT+	С	LKOUT-	B1	B3	B	5	B7
B2-CON1 CLKIN+			╞								2	X	~
B2-CON2 CLKIN-			╞			-+				<u> </u>	<u> </u>		X
B2-CON4	CLKOUT-		┢										
SMP1	TP-1A-B1	X	Ĺ										
SMP2	TP-1A-B3			X									
SMP3	TP-1A-B5		┞										
SMP4	IP-1A-B7		1										

Appendix: Software installation when controlling AT93000 via PC

The AT93000 can also be controlled via a PC by connecting the Ethernet ports to the PC PC minimum hardware requirements are as follows:

- Windows XP SP3 or greater
- Minimum 2 GB RAM
- 1 Ethernet card to establish connection with the device (2 Multilane ethernet ports)
- Pentium 4 processor 2.0 GHz or greater
- .NET Framework 4.0

PC software installation follows. To use an ML instrument under Windows XP, Windows 7 and Vista, it is important that the correct start-up sequence is followed:

- Ensure Microsoft .NET Framework 4.0 is installed
- Install the instrument GUI software from MultiLane's public website
 - Go to ATE | MultiLane (multilaneinc.com)
 - Scroll down: MultiLane Instruments for V93000 \rightarrow Click on any instrument (eg, AT4039E)
 - You will find the instrument GUI here

Manual

Ł

- Connect the power cable to the faceplate
- Change the IP of the instrument to fit in the network range
 - Multilane instruments come with preassigned IP addresses
 - The IP address can be manually changed via their GUI
 - DHCP is not supported
- Communication through Ethernet port is required for data acquisition
- Connect the ethernet cable to the faceplate. Depending on instrument installation, 2 ethernet connections may be required
- Now the instrument is powered up, having the right IP, the Ethernet cable links the instrument to the PC with the GUI correctly installed
- To open the GUI, double click on the software icon located in the Desktop directory

Appendix: Older Revision Backplane Clock Jumper Settings (AT4000 REV B)

The AT4000 REV B backplane uses jumpers instead of switches to control MASTER/SLAVE clock selection.

Figure 17:AT4000 REV B Backplane

Figure 18:AT4000 REV B cable connection options between backplanes

To set MASTER/SLAVE, refer to the following table:

	U450 is	U451 is	U452 is	U453 is	All U45x
	MASTER	MASTER	MASTER	MASTER	SLAVE
U3	0	0	1	1	0
U5	1	1	0	1	1
U7	1	1	0	0	0
U12	1	1	1	1	0
U13	0	1	0	0	0

Rev. No.		Amendments						
	Section	Description						
0.9		Initial revision uploaded to Multilane website						
0.9.1		Added appendix "Loadboard reference designators"	lan 14 2021					
		Added cassette #'s	Jan 14 2021					
0.9.2		Changed U13 to "0" for "ALL SLAVE" configuration	March 2, 2021					
0.9.3	Appendix 4	Added Appendix showing system block diagram	Oct 26, 2021					
0.9.4	All	Updated all sections to reflect ECO changes made in 2022	Oct 11, 2022					

Contact <u>Sales@multilaneinc.com</u> for sales information. Contact <u>ATE-FAE@multilaneinc.com</u> for additional technical information.

North America

48521 Warm Springs Blvd. Suite 310 Fremont, CA 94539, USA +1 510 573 6388

Worlwide

Houmal Technology Park Askarieh Main Road Houmal, Lebanon +961 81 794 455

Asia

7th Floor-2, No. 156 Sec. 2, Dongda Road, North District, Hsinchu City 300, Taiwan (R.O.C.) +886 3 5744 591 UAE Building 4WA, Office 420 Dubai Airport Freezone Authority, Dubai, UAE +971 4 548 7 547